翻訳と辞書
Words near each other
・ Marguerite-D'Youville
・ Marguerite-D'Youville Regional County Municipality
・ Marguerite-Louise Couperin
・ Marguerite-Thérèse Lemoine Despins
・ Marguerite-Élie Guadet
・ Margueritte
・ Marguerittes
・ Margueron
・ Marguestau
・ Margulan Seisembayev
・ Margules
・ Margules activity model
・ Margules function
・ Margulies
・ Margulis
Margulis lemma
・ Margun
・ Margun, Iran
・ Margunn Bjørnholt
・ Margunn Ebbesen
・ Margunn Haugenes
・ Margus
・ Margus (city)
・ Margus (name)
・ Margus Hanson
・ Margus Hernits
・ Margus Hunt
・ Margus Kolga
・ Margus Lepa
・ Margus Maiste


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Margulis lemma : ウィキペディア英語版
Margulis lemma
In mathematics, the Margulis lemma (named after Grigory Margulis) is a result about discrete subgroups of isometries of a symmetric space (e.g. the hyperbolic n-space), or more generally a space of non-positive curvature.
Theorem: Let S be a Riemannian symmetric space of non-compact type. There is a positive constant
:\epsilon=\epsilon(S)>0
with the following property. Let F be a set of isometries of S. Suppose there is a point x in S such that
:d(f \cdot x,x)<\epsilon
for all f in F. Assume further that the subgroup \Gamma generated by F is discrete in Isom(S). Then \Gamma is virtually nilpotent. More precisely, there exists a subgroup \Gamma_0 in \Gamma which is nilpotent of nilpotency class at most r and of index at most N in \Gamma, where r and N are constants depending on S only.
The constant \epsilon(S) is often referred as the ''Margulis constant''.
==References==

*Werner Ballman, Mikhael Gromov, Victor Schroeder, ''Manifolds of Non-positive Curvature'', Birkhauser, Boston (1985) p. 107

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Margulis lemma」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.